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1. Abstract

The decentralized finance (DeFi) ecosystem has experienced significant security challenges since its
inception, with documented losses exceeding US$100 billion due to various forms of financial fraud,
including sophisticated social engineering attacks, protocol exploitation, and malicious contract
deployment. Additionally, approximately US$150 million has been lost through defaults in under-
collateralized cryptocurrency lending protocols. These security vulnerabilities, combined with the
irreversible nature of blockchain transactions, have created persistent barriers to mainstream adop-
tion while contributing to market instability. To address these challenges, we present COSINE, a
novel Layer-2 protocol that implements dynamic, cross-chain and trust-minimized credit scoring
mechanisms. This protocol provides real-time creditworthiness assessment across all blockchain net-
works, offering an efficient and transparent evaluation framework that maintains decentralization
principles.

At the core of COSINE’s innovation is a sequential voting mechanism that incorporates
reputation-weighted votes, allowing users to influence credit scores in real-time based on their
historical voting behavior. This ensures that accuracy in determining trustworthiness scales as
the network grows, adapting and refining its assessment capabilities with each new transaction.
The protocol also integrates advanced fraud detection techniques, such as randomized time
windows and multi-hop association risk analysis, to identify malicious actors and penalize
wallets associated with suspicious behavior.

Instead of using traditional numeric credit scores, COSINE employs cosine similarity in a vector
space, offering a more stable and intuitive measure of trustworthiness and risks when transacting.

In addition, COSINE enables cross-chain wallet linking, allowing credit assessments to reflect ac-
tivity across multiple blockchains, thereby improving interoperability and trust across the DeFi
ecosystem. The protocol’s self-tuning nature ensures that credit scoring parameters adapt to evolv-
ing network conditions, while its cost-recoup mechanism guarantees that users who request credit
score verifications contribute to the ongoing sustainability of the system.

COSINE ultimately provides a transparent, flexible, and adaptive credit scoring system that en-
hances DeFi’s real-world adoption and trustworthiness, allowing users transacting all digital cur-
rencies feel secure.
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2. Motivation & Key Goals

The rapid growth of decentralized finance (DeFi) has created immense opportunities, but also
significant challenges, particularly in areas of fraud prevention. Traditional credit scoring systems
are deeply centralized, biased, and often exclude individuals from financial access. In contrast, DeFi
relies on smart contracts and open-source protocols, which are transparent and accessible to
all, but lack efficient ways to assess the trustworthiness of participants and prevent malicious
activities. To address these problems, COSINE was designed with the following key goals:

• Real-Time On-Chain Credit Scoring & Verification: One of the biggest hurdles in
DeFi is the difficulty of facilitating under-collateralized lending, where loans are issued
without the need for excessive collateral. COSINE provides a real-time, trust-minimized
credit score for every wallet, allowing decentralized applications (dApps) and lenders to
assess the creditworthiness of users instantly. This reputation-based scoring helps foster
confidence in lending systems, reducing reliance on traditional credit bureaus and expanding
financial inclusion.

• Dynamic, Self-Tuning System: In a fast-moving DeFi environment, traditional fixed
penalty systems are inadequate. COSINE uses a self-tuning mechanism that adjusts
penalty and reward factors dynamically through Kalman filters, learning from real-time
data with enhanced responsiveness. Kalman filters provide adaptability to sudden network
changes and handle noisy data more effectively, ensuring that credit scoring parameters evolve
efficiently with the network. This continuous adaptation allows the protocol to respond to
new fraud tactics with greater agility.

• Reputation-Weighted Voting for Community-Driven Governance: Unlike tradi-
tional centralized systems, COSINE leverages community-driven governance through
reputation-weighted voting. Each participant’s ability to influence the protocol’s de-
cisions (e.g., vote weight) is based on their track record of accurate and honest votes. This
incentivizes consistent, truthful contributions, aligning participants’ interests with the
integrity of the ecosystem. Over time, this creates a robust, decentralized mechanism for
credit scoring and fraud detection.

• Advanced Fraud Detection: Fraudulent activities, such as money laundering or scams,
are rampant in the blockchain industry. COSINE addresses this by implementing random-
ized time windows and multi-hop analysis, which makes it more difficult for attackers
to predict and evade detection. By penalizing wallets associated with malicious behaviors or
addresses, COSINE creates a system that disincentivizes bad actors and helps maintain
the integrity of the network.

• Cosine Similarity for Trust Assessment: Traditional credit scores are often volatile
and prone to sudden fluctuations, leading to unfair judgments. COSINE introduces cosine
similarity to measure how close a wallet’s credit score is to a desired threshold or to another
wallet’s score, providing a more stable and intuitive measure of trustworthiness. This
method reduces score volatility and offers clearer insights into a wallet’s risk profile, aiding
both users,lenders, and borrowers in making better decisions.
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• Cross-Chain Interoperability: DeFi operates across a range of blockchains, but credit
scoring and fraud detection tools often fail to integrate across chains. COSINE solves this
problem by allowing wallets to link across multiple chains, enabling cross-chain trust met-
rics that reflect a user’s behavior across different ecosystems. This creates a unified, global
credit score, enhancing the flexibility and interoperability of the DeFi space.

By combining real-time scoring, adaptive learning, community governance, and advanced
fraud mitigation, COSINE addresses the pressing need for a trust layer in DeFi. The system
solves major pain points, such as the lack of adaptability, transparent credit assessments, and
effective fraud detection, all while reducing dependency on centralized institutions. Ultimately,
COSINE paves the way for a more trustworthy, inclusive, and secure DeFi ecosystem.
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3. Protocol Overview

This section provides a broad technical overview of the COSINE protocol, focusing on the transition
to a sequentially updated, self-tuning design that processes voting events in real time and
adjusts scaling factors automatically via continuous learning.

3.1. Core Principles & Key Components

1. Credit Score (CW ): Each wallet W on the L2 has a scalar credit score CW . The protocol
updates this score incrementally over time based on:

• Sequential Vote Events: Negative or positive votes cast by other users, each weighted by
the voter’s reputation RU .

• Association Risk Penalties: Based on random time windows/hop limits identifying sus-
picious links to malicious or blacklisted wallets.

• Rehabilitation: Positive votes that push a wallet’s score back up if it demonstrates better
behavior or was wrongfully penalized.

2. Voter Reputation (RU ∈ [0, 1]): Each user U who participates in governance or malicious-
flagging votes has a reputation metric. When the user’s voting aligns with final consensus
outcomes, RU increases; when they oppose consensus outcomes, it decreases. Over time,
reliable and consistent voters gain more influence.

3. Self-Tuning Scaling Factors: Rather than relying on static thresholds (e.g., “Major
penalty” or “Minor penalty”), COSINE employs dynamic scaling factors {Kneg, Kpos, Kassoc, Krehab}.
These factors are updated in real time using a Kalman filter-based feedback loop that dynam-
ically adjusts each scaling factor based on the difference between observed and expected im-
pacts of credit score shifts. This approach enables the protocol to respond rapidly to changing
network conditions and handle noisy data more effectively than traditional methods, ensuring
that score adjustments are appropriately scaled according to current network behavior. The
Kalman filter’s recursive nature also maintains computational efficiency suitable for real-time
processing.

4. Random Time Windows & Hop Limits: For association risk analysis, the protocol
chooses random intervals and a random hop depth in an attempt to thwart malicious actors
who try to carefully plan or space out their illicit transactions. If suspicious transactions
appear in that random window or within that hop limit, partial penalties are assigned.

5. Cosine Similarity Verification: When a lender or any other user wants to check a wallet’s
creditworthiness, the system computes a two-dimensional embedding of the wallet’s normal-
ized credit score and compares it (via cosine similarity) to a chosen threshold vector. A
similarity near 1 indicates the wallet is sufficiently trustworthy relative to that threshold.

6. Sequential Processing & Low Latency: Each new vote event or suspicious association
triggers immediate, low-latency updates on the L2 chain, avoiding heavy cryptographic op-
erations.
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3.2. Data Sources & Measured Variables

The protocol relies on direct blockchain data to measure:

• Transaction Amounts (Ai), Timestamp (ti), and Clustering (ncluster) from normal
on-chain activity.

• Vote Events, each storing the voter’s address, the sign of the vote (−1 or +1), and the block
timestamp of the vote.

• Association Links to detect multi-hop or direct transactions with known malicious wallets.

From these measurements, the protocol derives rolling means, standard deviations, and other vari-
ables (µV (t), σV (t), µR(t), etc.) using exponential moving averages.

3.3. Sequential Updates

COSINE does not wait for large batch voting windows. Instead, every vote and association risk
event triggers a credit score update in near-real time. This is achieved by:

• Maintaining rolling EMAs of historical vote deviations, credit score shifts, and so on.

• Updating these EMAs on every event, ensuring the system always “learns” from the most
recent data.

This help the protocol maintain responsiveness and adaptability in a dynamic network environment,
which is crucial for scalability

3.4. Validator Roles & VRF-Based Subset Selection

Although the primary emphasis in this whitepaper is on the self-tuning credit scoring mechanism,
COSINE still inherits a VRF-based validator selection process (see Section 4). A subset of valida-
tors is chosen at random (weighted by stake and performance scores), each sequential update is
processed, and a consensus update is then posted to the L2 ledger. This ensures trust-minimized,
decentralized operation.
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3.5. Storage & Dynamic Access

All credit scores CW reside with every validator node on the COSINE L2 for maximum transparency.
However, direct reading of the raw score is avoided:

• For official verifications, the user or dApp calls a function to compute the cosine similarity
between the wallet’s normalized score vector and a threshold vector (Section 10).

• The fee mechanism ensures repeated updates do not go unpaid (Section 12).

On-Chain Data
(Transactions, Votes, Associations)

Validator Processing
(VRF Selection, Outlier Filtering)

Credit Score Update
(Dynamic Scaling, Sequential Updates)

Credit Score Output
(Normalized Score Vector)

Cosine Similarity
Verification

Cross-Chain Linking
(External Address Verification)

Data Feed

Processing

Computation

Verification

Association Risk

Figure 1: COSINE Protocol Overview

The subsequent sections detail how negative and positive vote events shift the score, how association
risk triggers partial penalties, how community governance operates via sequential voting, how the
protocol processes cross-chain data, and how actual workflows (borrowing, verifying, re-linking)
unfold end-to-end.
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4. Mechanics of Validator Operations

While the new approach emphasizes dynamic scoring parameters and sequential updates, the core
validator architecture for producing the updated credit score remains grounded in VRF-based
subset selection and outlier filtering. This section details how these mechanics function, ensuring
that final credit scores are agreed upon fairly and with minimal overhead.

4.1. Phase 1: Determining Online Validators

First, validators who have staked Cosine tokens must “ping” the system regularly to be deemed
online. Let:

Vonline =
{

v
∣∣∣ LastPing(v) ≥

(
Tcurrent − ∆Tping

)}
,

where ∆Tping might be 5 minutes. Offline or non-responsive validators are excluded from the
selection set.

4.2. Phase 2: VRF-Based Subset Selection

From the online validators, the protocol wants to select a fraction γ for each credit score update.
Define:

Nselected = ⌈γ · |Vonline|⌉ ,

bounded by some maximum Nmax. Each validator v computes

yv = VRFskv (x),

where x is a random seed (often a recent block hash). The reputation-based weight is

Wv = Sα
v × (1 + β Pv),

with:

• Sv = stake,

• Pv = performance score in [0, 1],

• α ∈ [0.5, 1] and β > 0 are protocol parameters.

Then define
scorev = yv

Wv
.

The subset Vselected is chosen as the top Nselected validators with the smallest scorev.
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4.3. Phase 3: Credit Score Computation & Outlier Filtering

When an event triggers a wallet W ’s score update—such as a vote, association penalty, or rehabili-
tation (see Sections 7, 6, 8)—each validator v in the randomly selected subset Vselected (determined
via VRF as detailed in Section 4.2) computes a proposed new credit score Sv. This section outlines
the aggregation process, using a hybrid mean-median approach with dynamically adjusted thresh-
olds to filter out problematic (e.g., malicious or erroneous) validator proposals and compute a final
consensus score Sagg.

4.3.1. Step 1: Proposal Submission

Each validator v ∈ Vselected calculates:

Sv = Cold
W + ∆v,

where:

• Cold
W is the wallet W ’s previous credit score, stored on the COSINE Layer-2 ledger (Section 3).

• ∆v is the proposed shift, derived from the dynamic scaling formulas (Section 8), incorporating
vote impacts (∆vote), association penalties (∆assoc), or rehabilitation adjustments (∆rehab).
Each validator computes ∆v independently based on on-chain data and its own assessment.

The set {Sv}v∈Vselected represents all proposals, with n = |Vselected| being the number of validators
in the subset, bounded by Nmax (Section 4.2).

4.3.2. Step 2: Hybrid Statistical Measures

To robustly aggregate proposals, the protocol computes two sets of statistical measures: mean-based
(using µ and σ) and median-based (using M and MADn).

Mean-Based Measures

• Mean Computation: Calculate the arithmetic mean of all proposals:

µ = 1
n

∑
v∈Vselected

Sv.

This is a simple average, reflecting the central tendency if proposals were normally distributed.

• Standard Deviation Computation: Calculate the sample standard deviation:

σ =
√√√√ 1

n

∑
v∈Vselected

(Sv − µ)2.

Here, (Sv − µ)2 measures each proposal’s squared deviation from the mean, and the square
root normalizes it to the same units as Sv, providing a scale of variability.
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Median-Based Measures

• Median Computation: Sort {Sv} in ascending order to obtain S(1), S(2), . . . , S(n), then
compute:

M = median({Sv}) =
{

S((n+1)/2), if n is odd,
S(n/2)+S(n/2+1)

2 , if n is even.

The median is the middle value (or average of two middle values), offering a robust central
tendency less affected by extreme proposals.

• MAD Computation: Calculate the Median Absolute Deviation:

1. Compute absolute deviations from the median: dv = |Sv − M | for each v.
2. Sort {dv} to get d(1), d(2), . . . , d(n).
3. Compute the median of deviations:

MAD = median({dv}) =

d((n+1)/2), if n is odd,
d(n/2)+d(n/2+1)

2 , if n is even.

4. Normalize with a consistency factor for a normal distribution: MADn = 1.4826 · MAD,
where 1.4826 ensures MADn approximates the standard deviation under normality.

4.3.3. Step 3: Dynamic Threshold Estimation with Kalman Filters

To adapt to network conditions, thresholds τ(t) (for mean-based filtering) and k(t) (for median-
based filtering) are updated dynamically using Kalman filters, treating them as state variables.

State and Measurement Models

• State Evolution: Model thresholds with a random walk:

τ(t) = τ(t − 1) + wτ (t), wτ (t) ∼ N(0, Qτ ),

k(t) = k(t − 1) + wk(t), wk(t) ∼ N(0, Qk),

where Qτ and Qk are process noise variances, reflecting expected threshold variation per
update.

• Measurements: Define observed threshold requirements based on proposal spread:

zτ (t) = maxv∈Vselected |Sv − µ|
σ

,

zk(t) = maxv∈Vselected |Sv − M |
MADn

.

These represent the largest normalized deviations, indicating how wide the thresholds should
be to encompass honest proposals.
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Kalman Filter Steps For each update event t (triggered by a score update):

1. Prediction:
τ−(t) = τ(t − 1), P −

τ (t) = Pτ (t − 1) + Qτ ,

k−(t) = k(t − 1), P −
k (t) = Pk(t − 1) + Qk,

where Pτ and Pk are error variances for τ and k.

2. Kalman Gain:
Gτ (t) = P −

τ (t)
P −

τ (t) + Rτ
, Gk(t) = P −

k (t)
P −

k (t) + Rk
,

where Rτ and Rk are measurement noise variances.

3. Update:
τ(t) = τ−(t) + Gτ (t) · (zτ (t) − τ−(t)),

k(t) = k−(t) + Gk(t) · (zk(t) − k−(t)).

4. Error Variance Update:

Pτ (t) = (1 − Gτ (t)) · P −
τ (t), Pk(t) = (1 − Gk(t)) · P −

k (t).

Initial Default Values and Rationale

• τ(0) = 2.5, k(0) = 3: Initial thresholds are set to statistical norms for anomaly detection
under a normal distribution. τ(0) = 2.5 covers 98.76% of data (two-tailed), balancing sensi-
tivity and specificity as justified previously (original Section 4.3). k(0) = 3 covers 99.7% for
MAD, providing a slightly stricter initial filter due to MAD’s robustness, ensuring conserva-
tive outlier rejection at startup.

• Pτ (0) = Pk(0) = 1: Initial error variances reflect moderate uncertainty in τ and k before
data refines them. A value of 1 (unit variance) is a common starting point, allowing rapid
adaptation without assuming excessive precision.

• Qτ = Qk = 0.01: Process noise variances assume small threshold changes per update (e.g.,√
0.01 = 0.1), promoting stability while permitting gradual evolution, consistent with Sec-

tion 8’s scaling factor tuning.

• Rτ = Rk = 1.0: Measurement noise variances reflect expected variability in zτ and zk due
to proposal noise or attacks. A value of 1.0 assumes a standard deviation of 1 in normalized
deviations, a reasonable default per Section 8’s note, balancing responsiveness and smoothing.
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4.3.4. Step 4: Outlier Filtering with Hybrid Threshold Comparison

Proposals are classified as inliers (δv = 1) or outliers (δv = 0) using both sub-approaches, requiring
both conditions to hold.

Mean-Based Threshold Comparison

1. Compute the deviation from the mean: dv,µ = |Sv − µ|.

2. Compute the threshold: Tµ(t) = τ(t)·σ, where τ(t) is the dynamic threshold from the Kalman
filter.

3. Compare: Check if dv,µ ≤ Tµ(t).

4. Result: If true, the proposal passes the mean-based check; if false, it’s an outlier under this
sub-approach.

Median-Based Threshold Comparison

1. Compute the deviation from the median: dv,M = |Sv − M | (already calculated for MAD).

2. Compute the threshold: TM (t) = k(t) · MADn, where k(t) is the dynamic threshold from the
Kalman filter.

3. Compare: Check if dv,M ≤ TM (t).

4. Result: If true, the proposal passes the median-based check; if false, it’s an outlier under this
sub-approach.

Hybrid Decision

• Combine results:

δv =
{

1, if dv,µ ≤ τ(t) · σ and dv,M ≤ k(t) · MADn,

0, otherwise.

• A proposal is an inlier only if it passes both checks, ensuring robustness (median) and sensi-
tivity to variance (mean).
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4.3.5. Step 5: Final Score Aggregation

Aggregate only inlier proposals:
Sagg =

∑
v∈Vselected

δvSv∑
v∈Vselected

δv
.

If no inliers exist (∑ δv = 0), the protocol may revert to Cold
W or flag the update for review, though

typically n is large enough (due to VRF selection) to ensure some inliers.

4.3.6. Rationale

The hybrid approach leverages the mean’s ability to detect variance-based anomalies and the me-
dian’s resistance to extreme values or collusion. Dynamic thresholds τ(t) and k(t), updated via
Kalman filters, adapt to network conditions—e.g., tightening during stability to reduce false posi-
tives and widening during attacks to catch subtle manipulations. This enhances COSINE’s fraud
detection (Section 6) and aligns with its self-tuning design (Section 8).

4.4. Phase 4: Performance Score Adjustments

A validator’s performance score Pv is updated after each aggregation:

P (t+1)
v = max

(
0, min

(
1, P (t)

v + ∆v
))

,

where

∆v =

+∆+, δv = 1,

−∆−, δv = 0.

Repeated malicious deviations may also trigger stake slashing, providing strong incentives to pro-
pose correct updates.

4.5. Phase 5: Validator Reward Distribution

For each update event i, a total reward R
(i)
total from the network reward pool is shared among the

validators whose proposals were inliers (δv = 1):

Rv,i =


R

(i)
total∑

v∈Vselected
δv

, δv = 1,

0, δv = 0.

Hence, validators that remain near the consensus mean for the new credit score receive compensa-
tion.
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4.6. Cost Accumulation for Wallet Updates

Each wallet W accumulates the total cost of validator rewards spent on its updates:

Cacc(W ) =
n∑

i=1
R

(i)
total,

where n is the number of score update events since the wallet was last verified. Upon official
verification, a fee is paid that covers this accumulated cost, as described in Section 12.
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Hybrid Outlier Filtering
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Compute µ, σ, M , MADn
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Performance Score Adjustment
Update Pv based on inlier status

Reward Distribution
Distribute Rv,i to inliers

Cost Accumulation
for Wallet Updates

Figure 2: Mechanics of Validator Operations.
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5. Decentralized Storage and Updates

The COSINE Layer-2 (L2) protocol requires a robust, decentralized, tamper-proof, and scalable
storage system to underpin its real-time credit scoring, fraud mitigation, and cross-chain interop-
erability functionalities. This section details how COSINE achieves these objectives by maintain-
ing all necessary data—wallet-specific records, global variables, transaction logs, and cross-chain
bridging states—within a self-sufficient ledger managed exclusively by its validator network. CO-
SINE integrates all operations, including bridging and updates, directly into its protocol, ensuring
trust-minimization and operational independence. Here, we outline the data structures, update
mechanisms, bridging processes, and scalability strategies, providing a comprehensive blueprint
that aligns with our existing architecture (e.g., Sections 4, 8, and 10).

5.1. Objectives of Decentralized Storage

The COSINE L2 ledger must meet the following goals:

• Decentralization: All data is replicated across validators, avoiding reliance on external
systems like IPFS or Layer-1 (L1) blockchains.

• Tamper-Proofing: Data integrity is cryptographically enforced, ensuring immutability of
historical records and current states.

• Scalability: The system supports a growing number of wallets, transactions, and cross-chain
interactions without compromising performance.

• Self-Sufficiency: All operations—storage, updates, and bridging—are managed internally
by COSINE validators.

• Accessibility: Validators and light clients can efficiently query wallet data and global vari-
ables.

To achieve these, we define a ledger structure with specific data components, detailed below, and
integrate update and bridging processes directly into the validator workflow.
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5.2. COSINE L2 Ledger Structure

The COSINE L2 ledger is a blockchain-like structure where each block encapsulates the protocol’s
state and transaction history. It consists of three primary components:

1. Block Header: Contains metadata linking blocks and committing to the state:

• Previous block hash: Ensures chain continuity (e.g., SHA-256 of the prior header).
• Timestamp: Unix timestamp of block creation.
• State Roots: Merkle roots for wallet state (WST_root), global state (GSO_root), and

linked L1 mappings (L1T_root).
• Validator Signatures: Multi-signature from the VRF-selected validator subset (Sec-

tion 4.2).

2. Transactions: A list of events altering the state (e.g., token transfers, votes, linking requests,
verification requests, bridge operations).

3. State Updates: Changes applied to the wallet state trie, global state object, or linked L1
trie post-consensus.

Blocks are produced periodically (e.g., every 5 minutes) or triggered by sufficient transaction vol-
ume, with validators using the hybrid mean-median approach (Section 4.3).

5.2.1. Wallet State Trie (WST): Wallet-Specific Data

The Wallet State Trie (WST) is a Merkle Patricia Trie (MPT) storing data for each COSINE
L2 wallet. An MPT combines the efficiency of a Patricia trie (compact key storage) with the
cryptographic security of a Merkle tree, enabling fast updates and proofs of inclusion/exclusion.
The trie is committed to via WST_root in each block header.

Key and Value Structure

• Key: The COSINE L2 wallet address (a 256-bit hash, e.g., keccak256(public_key)).

• Value: A serialized object containing all wallet-specific fields, structured as follows:

Fields in the Serialized Object

• Linked L1 Addresses (linked_L1_addresses):

– Format: List of tuples [(chain_id, address), ...].
– chain_id: Integer identifying the blockchain (e.g., 1 for Ethereum, 501 for Solana).
– address: L1 address (e.g., 160-bit Ethereum address, 256-bit Solana public key).
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– Example: [(1, 0x1234...), (501, SolanaAddrXYZ...)].
– Purpose: Tracks cross-chain identity for credit scoring and interoperability (Section 10).

• Compounded Cost of Computation (C_acc(W)):

– Format: Numeric value (e.g., in wei-like units of COSINE tokens).
– Purpose: Accumulates validator rewards for updates (Section 4.6), reset to 0 after veri-

fication fee payment.
– Initial Value: 0.

• Reputation Score (R_U):

– Format: Float in [0, 1].
– Purpose: Measures voting reliability (Section 7.4).
– Initial Value: 0.1 (baseline for new wallets).

• Rolling Statistics (rolling_stats):

– Format: Map of exponential moving averages (EMAs), e.g., {"_V": {value, last_updated},
"_V": {value, last_updated}, ...}.

– Fields: _V(t), _V(t) (vote statistics), _R(t), _R(t) (association risk), etc.
– value: Current EMA value (float).
– last_updated: Unix timestamp or block height of last update.
– Purpose: Supports dynamic scaling (Section 8).
– Initial Values: Seeded with defaults (e.g., _V = 0, _V = 1).

• Timestamp of Last Update (last_updated):

– Format: Unix timestamp or block height.
– Purpose: Tracks data recency for validation and synchronization.
– Initial Value: Set at wallet creation.

• Credit Score (C_W):

– Format: Unbounded float or integer.
– Purpose: Reflects creditworthiness (Section 8).
– Initial Value: 0 (default for new wallets).

• Association Risk Score (R_assoc(W)):

– Format: Numeric value (float).
– Purpose: Sums transaction weights from suspicious links (Section 6.1).
– Initial Value: 0.

• Vote History (vote_history):

– Format: List of vote events, e.g., [voter_address, vote_value, timestamp, effective_vote,
...].
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– voter_address: Address of the voting wallet.
– vote_value: -1 or +1.
– timestamp: When the vote was cast.
– effective_vote: R_U * vote_value.
– Purpose: Tracks voting impacts for auditing and reputation updates.

• Token Balance (token_balance):

– Format: Numeric value (e.g., in smallest COSINE token units).
– Purpose: Tracks COSINE token holdings on L2.
– Initial Value: 0, unless initialized with tokens.

5.2.2. Global State Object (GSO): Protocol-Wide Variables

The Global State Object (GSO) stores variables applicable to the entire protocol, committed to
via GSO_root (e.g., a SHA-256 hash of the serialized object) in each block header.

Fields in the GSO

• Scaling Factors (scaling_factors):

– Format: Map, e.g., {"K_neg": {value, P_t}, "K_pos": {value, P_t}, "K_assoc":
{value, P_t}, "K_rehab": {value, P_t}}.

– value: Current scaling factor (float).
– P_t: Kalman filter error variance for dynamic updates (Section 8).
– Initial Values: All set to 1.0, P_t = 1.
– Purpose: Adjusts credit score shifts dynamically.

• Network Reward Pool (network_reward_pool):

– Format: Numeric value (COSINE token units).
– Initial Value: 400,000,000 (40% of total supply, Section 13).
– Purpose: Funds validator rewards (Section 4.5).

• Total Token Supply on L2 (total_token_supply_L2):

– Format: Numeric value (COSINE token units).
– Initial Value: Adjusted post-initial distribution (e.g., 600,000,000 after allocating 40%

to rewards).
– Purpose: Tracks circulating supply on L2.

• Validator Stakes and Performance Scores (validators):

– Format: Map, e.g., {v_addr: {"stake": S_v, "performance": P_v, "last_ping":
timestamp}}.
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– stake: Staked tokens (minimum 100,000, Section 13).
– performance: Float in [0, 1] (Section 4.4).
– last_ping: Timestamp of last ping (Section 4).
– Initial Values: Set for genesis validators.
– Purpose: Tracks validator eligibility and influence.

• Linked L1 Mapping (association_mapping):

– Format: Map, e.g., {(chain_id, L1_address): L2_wallet_address}.
– Purpose: Enforces one-to-one L1-to-L2 linking (Section 10).
– Initial Value: Empty.

• Bridged Token States (bridged_tokens):

– Format: Map, e.g., {chain_id: locked_amount}.
– Example: {1: 10,000,000} (10M tokens locked for Ethereum).
– Purpose: Tracks tokens bridged to L1 chains.
– Initial Value: Empty.

5.2.3. Linked L1 Trie (L1T): Enforcing One-to-One Linking

The Linked L1 Trie (L1T) ensures each L1 address maps to exactly one L2 wallet, committed to
via L1T_root.

• Key: Hash of (chain_id, L1_address) (e.g., keccak256(chain_id || L1_address)).

• Value: The associated L2 wallet address.

• Purpose: Prevents malicious re-linking (Workflow 7, Section 11).

5.3. Transaction Types and Recording

The ledger records all transactions that alter state:

• Token Transfers: {sender, receiver, amount, timestamp}.

• Vote Events: {voter, target_wallet, vote_value (-1 or +1), timestamp, captcha_solution}.

• Linking Requests: {L2_wallet, chain_id, L1_address, signature}.

• Verification Requests: {wallet, requester, threshold, fee_paid}.

• Bridge Operations: {operation (lock/mint or burn/redeem), chain_id, amount, user}.

Each transaction is included in a block, processed by validators, and reflected in state updates.
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5.4. Update Mechanisms

Updates to the WST, GSO, and L1T occur sequentially via validator consensus, triggered by
transactions or events (e.g., votes, association penalties).

5.4.1. Wallet State Updates

1. Event Trigger: A transaction (e.g., vote, token transfer, linking request) targets wallet W .

2. Validator Selection: A subset Vselected is chosen via VRF (Section 4.2).

3. Computation: Validators compute updates (e.g., ∆vote, ∆assoc) using GSO scaling factors.

4. Consensus: Proposals are aggregated with outlier filtering (Section 4.3), yielding a final
value (e.g., CW ).

5. State Modification: Update the WST entry for W (e.g., set C_W = S_agg, increment
C_acc(W)).

6. Commitment: New WST_root is computed and included in the block header.

5.4.2. Global State Updates

• Scaling Factors: Updated via Kalman filters after each event (Section 8).

• Reward Pool: Decreased by R
(i)
total per update (Section 4.5).

• Validator Data: Adjusted for stakes and performance (Section 4.4).

• Process: Validators propose GSO changes, reach consensus, and commit the new GSO_root.

5.4.3. VRF Implementation for Trustless Selection

The Verifiable Random Function (VRF) ensures trustless validator selection:

1. Seed Generation: Use the previous block hash as seed x (e.g., SHA-256(headert−1)).VRF Computation:Eachvalidatorv
computes:

yv = VRFskv (x), πv = Proofskv (x),

using a standard VRF (e.g., based on elliptic curve cryptography).

2.3. Score Calculation:

Wv = Sα
v × (1 + βPv), scorev = yv/Wv,

where α = 0.5, β = 0.2 (configurable in the Global State Object (GSO)).
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4. Verification: Validators broadcast {yv, πv}, peers verify πv against v’s public
key and x.

5. Selection: Top Nselected = ⌈γ|Vonline|⌉ validators with smallest scorev are chosen
(γ = 0.1, Nmax = 100).

This ensures randomness, verifiability, and decentralization without external dependencies.

5.5. Cross-Chain Bridging Mechanism

Since COSINE lacks smart contracts, bridging is integrated into the protocol and managed by
validators, maintaining a total supply invariant of 1 billion tokens.

5.5.1. Bridging from COSINE L2 to L1

1. User Request: Submit {lock/mint, chain_id, amount, L1_address}.

2. Validation: Validators check token_balance ≥ amount in WST.

3. Locking:

• Decrease token_balance of user’s wallet by amount.
• Increase token_balance of a bridge account (a reserved WST entry) by amount.

4. Proof Generation: Validators create a proof of lock:

Proof = {L2_wallet, amount, chain_id, tx_id, Merkle_proof, signatures}.

5. Cross-Chain Relay: Proof is relayed to the L1 chain (e.g., via an oracle or messaging
protocol).

6. Minting: L1 bridge contract verifies proof and mints wrapped tokens (e.g., wCOSINE).

7. State Update: Increase bridged_tokens[chain_id] in GSO by amount.

5.5.2. Bridging from L1 to COSINE L2

1. Burn on L1: User burns wrapped tokens, generating a proof of burn (e.g., L1 tx hash).

2. Submission: Submit proof to COSINE L2 via transaction.

3. Verification: Validators confirm burn against L1 state.

4. Unlocking:

• Decrease bridge account’s token_balance by amount.
• Increase user’s token_balance by amount.

5. State Update: Decrease bridged_tokens[chain_id] in GSO by amount.
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5.5.3. Supply Invariant

total_token_supply_L2 +
∑

chain_id
bridged_tokens[chain_id] = 1, 000, 000, 000.

This is enforced by validators during every bridge operation.

5.6. Scalability and Optimization

• Sharding: If wallet count exceeds a threshold (e.g., 50M), shard WST by address prefix,
assigning validators to shards.

• Pruning: Remove vote_history entries older than 5 years, archiving them off-chain for
auditing.

• Light Clients: Provide Merkle proofs for querying C_W, token_balance, etc., reducing full
node load.

COSINE L2 Ledger
(Block Header, Transactions)

Wallet State Trie
(WST: C_W, token_balance, etc.)

Linked L1 Trie
(L1T: L1-to-L2 Mapping)

Global State Object
(GSO: K_neg, validators, etc.)

VRF-Selected Validators
(Consensus, Updates)

Bridge Operations
(Lock/Mint, Burn/Redeem)

Commits to

Commits to

Enforces

Updates

Updates

Processes

Updates

Figure 3: COSINE L2 Storage and Update Workflow

5.7. Remarks

The COSINE L2 ledger, with its WST, GSO, and L1T, provides a decentralized, tamper-proof,
and scalable storage solution. Wallet-specific data enables real-time credit scoring and cross-chain
linking, while global variables support protocol-wide operations. Integrated bridging ensures to-
ken interoperability without external dependencies, and validator-driven updates maintain self-
sufficiency. This design aligns with COSINE’s trust-minimized ethos, offering a robust foundation
for its DeFi ecosystem.
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6. Fraud Detection & Network-Wide Penalization

Fraud detection in COSINE leverages randomized time windows and multi-hop association
analysis to penalize wallets linked to malicious activities. Once a wallet is flagged or if it accumu-
lates suspicious on-chain interactions, partial penalties degrade its credit score. This section also
describes how partial blacklisting works without whitelisting and how the dynamic scaling approach
applies to association penalties.

6.1. Association Risk Analysis

6.1.1. Random Time & Hop Limits: Rationale

To combat strategic laundering, COSINE uses:

• A random time window Tlimit sampled from a uniform range, e.g. 30 to 730 days after a
triggering event. This means the protocol can examine transaction flows within that future
interval.

• A random hop limit Hlimit in {1, . . . , 15}. Any wallet that receives funds from a malicious
address or from an intermediate address within Hlimit hops may be flagged for partial penalty.

Attackers thus cannot reliably predict how far or how long the system will look for suspicious links,
forcing them to remain uncertain about attempts to route funds through multiple intermediary
addresses.

6.1.2. Measuring Transaction Data for Association

Every transaction i from wallet W1 to W2 records:

Ai (amount), ti (timestamp), ncluster (clustering count).

A weight function:

wi = log(1 + Ai) × [1 + β (ncluster − 1)] × e−δ(tcurrent−ti),

captures the impact of transaction size, frequency, and recency:

• log(1 + Ai) models diminishing returns for large amounts,

• 1 + β(ncluster − 1) accounts for multiple transactions in short intervals,

• e−δ(tcurrent−ti) decays older transactions’ influence.
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6.1.3. Computing Association Risk

For wallet W , define
Rassoc(W ) =

∑
i ∈ T (W, Hlimit, Tlimit)

wi,

where T (W, Hlimit, Tlimit) is the set of transactions that link W to a malicious wallet (directly or
within Hlimit hops) during the relevant random time window. If Rassoc(W ) significantly exceeds
typical network norms, a partial penalty is applied.

6.2. Dynamic Association Penalty: Self-Tuning Approach

COSINE tracks rolling means and standard deviations for association risk:

µR(t), σR(t).

Whenever Rassoc(W ) is higher than µR(t) by a margin that exceeds a threshold multiple of σR(t),
a negative shift is triggered:

∆assoc = − Kassoc(t)
((Rassoc(W ) − µR(t))+

σR(t)

)γ

,

where γ is an exponent (often 1 for linear effect, though it can be greater than 1), and Kassoc(t)
is a dynamically updated scaling factor. This factor evolves via a feedback loop (Section 8) that
compares observed association penalties with expected standardized deviations.

6.3. Partial Blacklisting Mechanics

When ∆assoc < 0 is imposed, we call it a partial penalty or partial blacklisting. The wallet’s score is
not necessarily driven to extremely negative territory in one step, but repeated suspicious associa-
tions can accumulate and effectively block the wallet from typical lending thresholds. Importantly:

• Handling Exchange wallets: Exchange wallets, despite being high-volume, are protected
from accidental partial blacklisting by their transactional volume and frequency—which is
factored into the system’s association weight calculation. As exchanges frequently interact
with many wallets, their patterns are considered "normal" based on the cluster size and
transaction timing, preventing them from being penalized unless clear evidence of malicious
behavior emerges.

• Voting Restrictions for Collusion Prevention: If wallet W is partially penalized for
association with a malicious wallet M , then W cannot participate in any subsequent votes to
restore or rehabilitate M . This prevents a mutual absolution scenario.
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6.4. Scams & Suspicious Patterns

Typical scams (e.g., rug pulls, pig butchering, exploit addresses) can be quickly flagged by the
community, imposing a negative vote shift on the suspect wallet. Meanwhile, all wallets that
continue interacting with the suspect wallet (directly or through multiple hops) risk partial penalties
if the amounts, frequencies, or recency patterns exceed normal network activity. Over time, the
system thus “chokes out” malicious clusters and their spin-off addresses.
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7. Community Governance & Voting Mechanics

Community governance in COSINE revolves around sequential, reputation-weighted vote events.
There are no fixed intervals or single “all-or-nothing” votes. Instead, each user can cast a discrete
negative or positive vote at any time, and the effect on a suspect or target wallet’s score is computed
immediately. Over many votes, a final consensus emerges about whether a wallet is malicious,
benign, or rehabilitated.

7.1. Voter Reputation (RU )

Each voting wallet U has a reputation score RU ∈ [0, 1]. Initially, new wallets may have RU = 0
or a small baseline (e.g. 0.1) to prevent purely zero influence. As U votes consistently with the
evolving consensus, RU increases; if U repeatedly votes contrary to the eventual outcome, RU falls,
limiting future influence.

7.2. Sequential Vote Events

7.2.1. Event Data

When a user U casts a vote vU ∈ {−1, +1} at block timestamp tv:

• The system records EffectiveVoteU = RU × vU .

• This value is compared to the current rolling average µV (t) of effective votes, as well as the
rolling standard deviation σV (t).

7.2.2. Deviation ∆V

We define:
∆V =

(
RU · vU

)
− µV (t).

If ∆V is only slightly outside typical historical norms, it might not move the target wallet’s score
much. If ∆V is large (for instance, many high-reputation users strongly voting negative or positive
against the average), the magnitude of the resulting shift is bigger.
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7.2.3. Dynamic Vote Impact

The credit score shift from a single vote event is:

∆vote =


− Kneg(t)

( |∆V |
σV (t)

)γ
, if ∆V < −λ σV (t),

+ Kpos(t)
( |∆V |

σV (t)
)γ

, if ∆V > +λ σV (t),

0, otherwise.

Here:

• λ is a tolerance factor (e.g., 2.5) controlling how many standard deviations away from the
mean is needed to trigger a non-zero shift.

• γ is an exponent controlling how quickly the penalty or reward grows relative to standardized
deviation.

• Kneg(t) and Kpos(t) are self-tuning scaling factors, each updated over time using a Kalman
filter-based feedback loop (Section 8).

If ∆V is within ±λ σV (t), the system deems it “near average” and does not shift the wallet’s score.

7.3. Positive vs. Negative Vote Accumulation

Unlike older major/minor penalty designs, COSINE aggregates all negative or positive votes over
time:

• Repeated Negative Votes: If many high-reputation users strongly cast negative votes
(vU = −1), the target wallet can quickly be driven into a lower credit bracket, effectively
blacklisting it from undercollateralized lending.

• Positive Votes & Rehabilitation: If the wallet’s situation improves or if the community
believes the negative votes were in error, a wave of positive votes (vU = +1) can incrementally
restore the wallet’s score.

This continuous, real-time approach allows the network’s stance on a wallet to evolve organically,
with no single final “yes/no” cut-off.
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7.4. Reputation Updates for Voters

After each vote, or after a short delay so the system can gauge the “direction” of subsequent votes,
the protocol updates RU . A typical approach:

R
(t+1)
U = clamp

(
R

(t)
U + αR · (1 − ϵU ) − βR · ϵU , 0, 1

)
,

where:

• ϵU measures how far the user’s vote EffectiveVoteU ended up from the final, longer-term net
direction.

• αR, βR are learning rates, controlling how quickly RU rises or falls.

Hence, consistent alignment with the evolving consensus yields gradually higher reputation, while
repeated misalignment reduces it.

7.5. Ineligibility for Associated Wallets

Recall that if a wallet W is penalized for association with a malicious wallet M , it cannot vote
on M ’s malicious status or rehabilitation. This rule halts direct collusion, where malicious wallet
clusters might artificially inflate each other’s reputation or absolve each other from penalty.

Malicious
Wallet (MW)

Associated
Wallet (AW)

Voter Wallet
(Reputable)

New Voter
Wallet

Association Risk Analysis

Negative Vote

Positive/Rehab Vote

Voting Restriction

Fraud Detection & Penalization Community Governance & Voting

Figure 4: Overview of Fraud Detection, Network-Wide Penalization, and Community Governance
& Voting Mechanics.
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8. Credit Score Updates: Single-Dimensional Scalar Approach

COSINE tracks a single-dimensional credit score CW for each wallet. That score is updated in-
crementally according to the negative or positive votes from Section 7 and the partial association
penalties from Section 6. Additionally, a positive rehabilitation “vote wave” can push CW upward
if the community sees evidence the wallet has reformed.

8.1. Unified Update Equation

At each relevant event—i.e., a new vote or an association penalty—∆vote or ∆assoc is computed.
The continuous credit score update is:

C
(t+1)
W = C

(t)
W + ∆vote + ∆assoc + ∆rehab,

where ∆rehab is the shift from any explicit rehabilitation mechanism described next.

8.2. Rehabilitation Updates

Even if a wallet is severely penalized by negative votes or suspicious interactions, it can improve
its score through:

• Positive Vote Events: Over time, if new high-reputation voters strongly cast vU = +1 for
the wallet, the normal ∆vote can push it upward again.

• Explicit Rehabilitation Votes: In some versions of the protocol, the community may
declare a separate “rehab” vote. This is effectively a strongly positive wave. Suppose a net
rehabilitation measure Vrehab = ∑

Eligible RU · (+1) arises, significantly above the historical
rolling mean. Then:

∆rehab = + Krehab(t)
(

(Vrehab − µR,V (t))+
σR,V (t)

)γ

,

where µR,V (t) and σR,V (t) track the typical magnitude of positive “rehab” signals. The scaling
factor Krehab(t) is updated via the same feedback loop approach described below.
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8.3. Dynamic Scaling Factors: Feedback Loops

Overview Each type of event (negative vote, positive vote, association penalty, rehabilitation)
has an associated scaling factor:

Kneg(t), Kpos(t), Kassoc(t), Krehab(t).

These factors start at initial values (e.g., 1.0) and self-tune using a Kalman filter to dynami-
cally adjust based on the discrepancy between observed and expected impacts. This ensures that
penalties and rewards remain appropriately scaled and responsive to current network conditions,
leveraging the Kalman filter’s ability to adapt quickly and handle noisy data effectively.

Kalman Filter Update Process For each scaling factor, such as Kneg(t) for negative votes, we
employ a Kalman filter where the scaling factor is treated as a state variable. The update occurs
sequentially with each relevant event (e.g., a negative vote). The process is as follows:

1. State Model: The scaling factor is modeled with a simple random walk to allow adaptation
over time:

Kneg(t) = Kneg(t − 1) + wt,

where wt ∼ N(0, Q) is the process noise with variance Q, reflecting expected variation in the
scaling factor.

2. Measure Observed and Expected Impacts:

• ObservedImpact: For each negative vote event i, the actual shift applied is:

∆obs
vote(i) = −Kneg(t) ·

( |∆V (i)|
σV (t)

)γ

,

where ∆V (i) = (RU · vU ) − µV (t). We define ObservedImpact(t) = |∆obs
vote(i)|.

• ExpectedImpact: The expected shift is based on the prior scaling factor:

∆exp
vote(t) = Kneg(t − 1) ·

( |∆V (i)|
σV (t)

)γ

,

and ExpectedImpact(t) = |∆exp
vote(t)|.
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3. Kalman Filter Update: The scaling factor is updated using the Kalman filter equation:

Kneg(t + 1) = Kneg(t) + Gt · (ObservedImpact(t) − ExpectedImpact(t)),

where Gt is the Kalman gain, computed as:

Gt = Pt

Pt + R
,

• Pt is the estimated error variance of Kneg(t) before the update, predicted as Pt = Pt−1 +
Q,

• R is the measurement noise variance, reflecting uncertainty in the observed impacts,
• After the update, Pt+1 = (1 − Gt) · Pt.

4. Interpretation:

• If ObservedImpact > ExpectedImpact, the shift was larger than anticipated, and Kneg
increases to align future shifts with observed effects.

• If ObservedImpact < ExpectedImpact, the shift was smaller, and Kneg decreases.
• The Kalman gain Gt balances the influence of new measurements against the prior

estimate, adapting quickly to significant changes while filtering noise.

Application to All Scaling Factors The same Kalman filter approach applies to Kpos(t),
Kassoc(t), and Krehab(t), with ObservedImpact and ExpectedImpact defined based on their respec-
tive shifts (∆vote for positive votes, ∆assoc for association penalties, ∆rehab for rehabilitation). Each
uses separate process noise Q and measurement noise R parameters, tuned to the event type.

Recommended Default Values for Q and R:

In the Kalman filter used to update scaling factors (e.g., Kneg, Kpos, Kassoc, Krehab), two key pa-
rameters govern the adaptability and stability of the system:

• Q (Process Noise Variance): This parameter represents the expected variance in the
scaling factor between updates. A larger Q allows the scaling factor to adapt more quickly to
changes but may introduce sensitivity to noise. A default value of Q = 0.01 is recommended,
assuming moderate variation in scaling factors (e.g., typical changes of around 0.1 per update).
This ensures gradual adaptation while maintaining stability.

• R (Measurement Noise Variance): This parameter reflects the uncertainty or noise in
the observed impacts (e.g., differences between observed and expected credit score shifts). A
larger R reduces the filter’s reliance on noisy measurements, promoting smoother updates. A
default value of R = 1.0 is suggested, assuming a standard deviation of 1.0 in the measurement
noise, which is a common starting point when specific noise data is unavailable.

• Balance Between Responsiveness and Stability: With Q = 0.01 and R = 1.0, the filter
prioritizes stability, preventing overreaction to isolated events while allowing adaptation to
persistent trends. These defaults are suitable for all scaling factors but can be adjusted based
on empirical data.
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Implementation Note The specific values of Q and R are configurable protocol parameters,
determined empirically to optimize responsiveness and stability. This mechanism offers adaptability
to sudden network shifts and robustness against noisy data.

8.4. No Upper or Lower Bound on CW

Credit scores can become very large (for trustworthy wallets) or very negative (for repeated of-
fenders). Different DeFi protocols can place their own acceptance thresholds. Because COSINE
is single-dimensional, integrators simply interpret the final numeric value. Alternatively, they can
rely on the cosine similarity check (Section 10) for acceptance or rejection.

8.5. Embedding for Cosine Similarity Verification

Instead of directly returning CW , the protocol produces a two-dimensional vector representing the
wallet’s normalized credit score:

ĈW = CW − µC

σC
(normalization),

where µC and σC are rolling statistics for all wallets’ credit scores. The wallet’s vector might be

vW =
(

ĈW

1

)
.

If a user wants to see if W is “close to” a threshold T , the threshold is also normalized:

T̂ = T − µC

σC
, vT =

(
T̂
1

)
.

Then
cosine_sim(vW , vT ) = vW · vT

∥vW ∥ ∥vT ∥
.

A similarity near 1 indicates CW is effectively at or above the threshold. This approach mitigates
raw score volatility and provides a stable measure of “closeness” to a desired credit level. Equally,
a user can compare vW to another wallet’s vector vW ′ to see how similar their credit statuses are.
If cosine_sim(vW , vW ′) is high, the two wallets share nearly the same credit standing.
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9. Vote Validation

In the COSINE protocol, voting is a fundamental component of community governance and credit
scoring, enabling users to provide feedback on wallet trustworthiness. To ensure the integrity of this
process and prevent Sybil attacks—where malicious actors create multiple identities to manipulate
outcomes—we implement a decentralized CAPTCHA (Completely Automated Public Turing test
to tell Computers and Humans Apart) system for vote validation. This section outlines the voting
process, the rationale for choosing decentralized CAPTCHAs, and the detailed mechanism by which
votes are validated, ensuring compatibility with the existing validator architecture for credit score
updates.

9.1. Rationale for Decentralized CAPTCHAs

The primary challenge in designing a voting system for the COSINE protocol is ensuring that votes
are cast by genuine human users, not automated bots, while maintaining accessibility in real-world
scenarios. Traditional decentralized voting systems often rely on staking mechanisms, where users
lock up tokens to participate. However, this approach is impractical for COSINE users, particularly
those who have lost funds due to malicious transactions. Expecting victims of scams to pay or stake
tokens to vote on the trustworthiness of a wallet would create a significant barrier to entry, reducing
participation and undermining the protocol’s effectiveness.

Decentralized CAPTCHAs address this issue by providing a lightweight, cost-free method to verify
human participation. Unlike staking, CAPTCHAs impose no financial burden on users, mak-
ing voting accessible even to those who have suffered losses. Furthermore, as seen in the in the
Post-Transaction Feedback in section 11.5.3 below, users who have verified a credit score and
transacted—either on the COSINE Layer 2 or a Layer 1 blockchain—are required to vote before
performing their next verification. This positions voting as a critical step, necessitating a secure
yet user-friendly validation mechanism.

9.2. Decentralized CAPTCHA Verification Process

The COSINE protocol integrates CAPTCHA verification into its existing validator framework,
leveraging a subset of validators selected via a Verifiable Random Function (VRF) to ensure de-
centralization. Importantly, to optimize user experience, each vote requires the user to solve only
a single CAPTCHA, presented immediately after casting their vote. This timing aligns with the
psychological flow of task completion, reducing friction. Below, we detail the step-by-step process
of vote validation.

1. Vote Submission and Validator Selection

• When a user U casts a vote vU ∈ {−1, +1} for a target wallet W , the protocol triggers
the validation process.

• A subset of validators Vselected is chosen via VRF, based on their stake and performance
scores (as outlined in Section 4.2).
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• From Vselected, one validator vgen is randomly selected to generate the CAPTCHA.

2. CAPTCHA Generation and Presentation

• vgen generates a CAPTCHA challenge CAPTCHAchallenge (e.g., an image selection task)
and determines the correct solution solutioncorrect.

• vgen sends CAPTCHAchallenge to the user U and shares solutioncorrect with the other
validators in Vselected.

3. User Solution Submission

• The user U solves the CAPTCHA and submits their solution solutionU via their client
(e.g., a wallet or web app).

4. Decentralized Verification

• Each validator in Vselected independently checks if solutionU = solutioncorrect.
• Define δv as the decision of validator v:

δv =
{

1, if solutionU = solutioncorrect,

0, otherwise.

• The vote is accepted if a majority of validators agree:

Vote Accepted =
{

1, if ∑v∈Vselected
δv > |Vselected|

2 ,

0, otherwise.

5. Credit Score Update

• If the vote is accepted, the same subset Vselected proceeds to compute the credit score
update for wallet W based on vU (see Section 8).

• The computational cost of CAPTCHA verification is factored into the overall cost of
updating the credit score after this vote-specific event, ensuring efficiency.

6. Reputation Update

• The reputation RU of user U is updated accordingly (see Section 7.4).

9.3. User Experience and CAPTCHA Design

For an optimal user experience, the CAPTCHA is presented immediately after the user submits
their vote, requiring only one challenge per vote. CAPTCHAs often analyze how they are solved
(e.g., via mouse movements or timing) to distinguish humans from bots.

9.4. Security and Validator Incentives

Validators are incentivized to act honestly through staking and performance-based rewards. The
random selection of vgen via VRF, combined with the majority-vote requirement, minimizes the
risk of manipulation by any single validator. If vgen provides an incorrect solutioncorrect, honest
validators in Vselected would reject the user’s solution, preventing the vote from being accepted.
This alignment of incentives ensures the integrity of the CAPTCHA verification process.
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9.5. Integration with Credit Score Updates

The decentralized CAPTCHA system is fully compatible with the validator mechanism for credit
score updates. Since Vselected is already tasked with computing the credit score update after a vote,
extending their role to include CAPTCHA verification is a natural fit. This dual-purpose approach
avoids additional validator selection overhead and incorporates the CAPTCHA validation cost into
the broader computational effort of processing a vote-specific event, distinct from partial association
events.
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10. Cross-Chain Wallet Verification and Associated Credit Scoring

COSINE facilitates a single credit score across multiple L1 or sidechains by letting users link external
addresses to the L2 wallet. The protocol then applies the same association analysis (random time
windows, multi-hop checks) to suspicious transactions on external chains, as well as enabling cross-
chain verification of the wallet’s credit “similarity.”

1. Verify that a given L1 address is indeed owned by (or under control of) the same individual
or entity controlling an L2 wallet on COSINE.

2. Ensure that each L1 address is linked to only one COSINE L2 wallet (to prevent malicious
users from associating the same L1 address with multiple COSINE addresses).

3. Monitor relevant L1 transactions to update credit scores accordingly (partial penalties, re-
habilitations, etc.).

4. Require external lenders (or counterparties on L1) to provide minimal feedback (Yes/No and
Trust/No-Trust votes) when they transact directly on L1 with a COSINE-associated user,
further enhancing the credit score reliability in a multi-chain context.

10.1. Linking External Addresses to an L2 Wallet

• Proof of Ownership: The user signs a challenge with the private key of the L1 address to
confirm they control it.

• One-to-One Linking: An L1 address can only be linked to one L2 wallet.

• Association Risk Import: Once linked, any suspicious or malicious interactions that
occur (or have occurred in the random time window) on the external chain will feed into
Rassoc(W (2)).

10.2. Cross-Chain Malicious Evader Scenario

An attacker might attempt to move funds from a blacklisted L1 address to a fresh L1 address, then
link that new address to a new L2 wallet. However, the protocol’s random time window and multi-
hop tracing can detect the suspicious connection. The newly linked wallet thus receives a partial
penalty based on the measured association risk. This strongly discourages reputation laundering
across chains.
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10.3. Cosine Similarity Verification Across Chains

A user or dApp on any chain wanting to check a wallet’s credit reliability calls an L2 function that
computes the cosine similarity between vW and the threshold vector vT . If the result is above
some acceptance threshold (e.g. 0.95), the wallet is deemed creditworthy. Alternatively, the lender
can compare vW to the credit vector of another wallet W ′ that they previously transacted with
and trust. The system returns

cosine_sim(vW , vW ′).

10.4. Verification Fee and Cost Recoup

When a cross-chain user requests official verification of W ’s credit status on the L2, the protocol
checks the accumulated cost of all updates to W ’s score since the last verification. The user pays
a verification fee proportional to that cost, which is burnt. This ensures the cost of repeated
computations is eventually borne by those who directly benefit from the credit data.

Ethereum L1
Wallet

Solana L1
WalletL1 Lender

Cross-Chain Linking
(Proof of Ownership)

COSINE L2
Wallet

Credit Scoring
& Cosine Similarity

Link Link

Mapped to

Credit Data

Verification Request
Cosine Similarity Check

Association Risk External Txns

Figure 5: Cross-Chain Wallet Verification and Associated Credit Scoring.
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11. End-to-End Workflows

This section provides several detailed scenarios illustrating how COSINE operates in practice,
focusing on the sequential voting, dynamic scaling, association penalty, cosine similarity, and cross-
chain aspects.

11.1. Workflow 1: Wallet Creation & Baseline Score

1. New L2 Wallet: A user creates a fresh wallet W on the COSINE L2. The protocol initializes
CW = Cdefault, e.g. 0.

2. Sparse Early Data: Rolling statistics µV (t) or σV (t) are initially seeded with default values.
Over time, each new vote or penalty event refines these EMAs.

3. Potential External Linking: If the user signs with an L1 address, that address is associated
to W , possibly affecting CW if the L1 address has suspicious history.

11.2. Workflow 2: Negative Vote & Score Drop

1. Suspicion: Some on-chain watchers suspect that wallet Wbad performed malicious behavior
(scam or exploit).

2. User U Votes: A known user U with reputation RU = 0.85 casts a negative vote (vU = −1).

3. Deviation Calculation:
∆V = (0.85 × (−1)) − µV (t).

Suppose the protocol sees ∆V < −λ σV (t).

4. Score Update:
∆vote = − Kneg(t)

( |∆V |
σV (t)

)γ
,

so
C

(new)
Wbad

= C
(old)
Wbad

+ ∆vote.

5. Compute Observed and Expected Impacts: The system computes the observed and
expected impacts for the negative vote.

• The observed impact is the magnitude of the actual shift applied:

ObservedImpact(t) = |∆obs
vote(i)| =

∣∣∣∣−Kneg(t) ·
( |∆V (i)|

σV (t)

)γ∣∣∣∣
• The expected impact is based on the prior scaling factor:

ExpectedImpact(t) = |∆exp
vote(t)| =

∣∣∣∣Kneg(t − 1) ·
( |∆V (i)|

σV (t)

)γ∣∣∣∣
These values are used in the Kalman filter update for Kneg(t) in the next step.
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6. Scaling Factor Feedback Loop: The Kalman filter updates Kneg(t + 1) based on the
difference between observed and expected impacts, as detailed in Section 8.

As more negative votes accumulate, Wbad’s score can drop well below typical lending thresholds.

11.3. Workflow 3: Association Risk & Partial Penalty

1. Trigger: Wbad is flagged malicious. The protocol initiates a random window [tflag, tflag +
Tlimit] and a random hop limit Hlimit.

2. Association Analysis: The system checks all addresses that receive funds from Wbad (di-
rectly or indirectly up to Hlimit hops) within the time window. Let’s consider a wallet Wassoc
that appears in this set.

3. Transaction Weight Computation: For each relevant transaction i,

wi = log(1 + Ai)
[
1 + β(ncluster − 1)

]
e−δ(tcurrent−ti).

4. Aggregate Risk:
Rassoc(Wassoc) =

∑
i∈T

wi.

5. Rolling Mean & Std Dev: The system has µR(t) and σR(t). If

(Rassoc(Wassoc) − µR(t)) > λassoc σR(t),

then
∆assoc = − Kassoc(t)

(Rassoc(Wassoc) − µR(t)
σR(t)

)γ
.

6. Score Penalty:
C

(new)
Wassoc

= C
(old)
Wassoc

+ ∆assoc.

7. Voting Restrictions: Wassoc is not allowed to cast a vote to rehabilitate Wbad.

11.4. Workflow 4: Rehabilitation via Positive Votes

1. Initiation: Suppose Wbad tries to rectify the harm or proves innocence. Some high-reputation
wallets cast positive votes (vU = +1).

2. Deviation Calculation:
∆V = (RU · (+1)) − µV (t)

If ∆V > +λ σV (t), then a positive shift occurs:

∆vote = + Kpos(t)
( |∆V |

σV (t)

)γ

Note: Kpos(t) is dynamically updated using a Kalman filter based on observed versus expected
vote impacts (see Section 8).
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3. Score Increase:
C

(new)
Wbad

= C
(old)
Wbad

+ ∆vote

Over many such votes, the wallet might be brought back above typical lending thresholds.

4. Optionally: Additional Rehab Mechanism: If the community uses a dedicated “rehab”
vote wave, then

∆rehab = + Krehab(t)
((Vrehab − µR,V (t))+

σR,V (t)
)γ

where Krehab(t) is also updated via a Kalman filter (see Section 8). The final credit score
shift is applied.

11.5. Workflow 5: Cross-Chain Borrowing & Cosine Similarity Check

The process of borrowing and lending across different blockchains is facilitated by the COSINE
protocol through a series of interactions between L1 addresses and L2 COSINE wallets. This
section outlines the steps for cross-chain borrowing and lending using COSINE’s similarity check
mechanism.

11.5.1. Borrowing and Lending with Attached Wallets

Once an L1 address W (1) is confirmed to belong to user U ’s COSINE wallet W (2), that user can
borrow or lend assets in two distinct ways:

1. On COSINE (L2) Directly:

• The user borrows or lends in COSINE tokens (or any whitelisted tokens bridging to L2).
• All transactions occur on the COSINE network, and the protocol automatically records

on-chain flows.
• Because the transaction is native to L2, the protocol trivially knows that user B trans-

acted with user A.

2. On the Underlying L1 Blockchain:

• The user or lender chooses to transfer, for example, Bitcoin, ETH, or SOL directly on
L1.

• COSINE only sees that user A (COSINE ID: W
(2)
A ) claims to be receiving or sending

funds at L1 address W
(1)
A .

• The protocol requests minimal feedback from the L1 lender or counterparty (user B)
afterward, as described below.

In both cases, COSINE aims to maintain an accurate credit score for user A, factoring in the success
or failure of any repayment.
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11.5.2. L1 → L2 Verification for Lenders or User-to-User Transactions

Suppose user B is a lender or a DeFi platform on L1 and wants to evaluate user A’s credibility.
The recommended workflow is as follows:

1. User A Submits Identity:

• If user A wishes to borrow on L1, they provide either their L1 address W
(1)
A or the

corresponding COSINE wallet ID W
(2)
A .

• A user interface or API call to COSINE’s “CheckScore” function returns a zero-knowledge
proof or aggregated measure that score(W (2)

A ) ≥ T , for some threshold T .

2. Look-Up of L2 Wallet from L1 Address:

• If user A provides the L1 address only, the lending platform queries COSINE’s association
mapping M to see the mapped L2 wallet W

(2)
A . This is a direct key–value lookup.

• The “CheckScore” function confirms whether the L2 wallet’s reputation meets the re-
quested threshold.

3. Decision on Lending:

• If the L2 credit score is acceptable, user B proceeds with the loan on L1. Otherwise,
they may reject or require more collateral.

11.5.3. Post-Transaction Feedback from L1 or L2 Counterparties

1. Feedback Requirement: COSINE enforces a rule that before user B can do any subsequent
verification or new loan checks on the L2 network, they must answer a few questions:

• If the transaction (loan) happens on L1—i.e., user B actually sends assets to user A’s
L1 address

• COSINE enforces a rule that before user B can do any subsequent verification or new
loan checks on the L2 network, they must answer the question: “Did you transact with
user A?”

• If yes, they must also cast a minimal “Trust or No-Trust” vote on user A.
• If the transaction (loan) happens on L2—i.e., user B actually sends assets to user A’s

L2 address. Since the Cosine Network already knows a transaction happened.
• User B just cast a minimal “Trust or No-Trust” vote on user A

2. Impact on A’s Credit Score:

• If user B states they transacted and had no issues, a small positive shift to A’s embedding
can be applied (subject to standard aggregator checks in COSINE).

• If user B states they transacted and “do not trust” user A, this triggers a negative shift
or at least flags for further investigation/voting.
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11.5.4. Verification Function and Cosine Similarity

For cross-chain lending and borrowing, the following verification function is used:

• Verification Function: The lender on Ethereum calls ComputeCosineSimilarity(W (2)
A , T )

on the COSINE L2, paying the verification fee if needed.

• Normalization: The protocol normalizes the wallet’s credit score:

Ĉ
W

(2)
A

=
C

W
(2)
A

− µC

σC
.

The threshold is similarly normalized: T̂ .

• Vector Embedding & Cosine Similarity: The protocol embeds the wallet’s score and
threshold as vectors:

vW =
(

Ĉ
W

(2)
A

1

)
, vT =

(
T̂
1

)
.

Then, the cosine similarity is calculated as:

similarity = vW · vT

∥vW ∥ ∥vT ∥
.

• Decision: If similarity ≥ thresholdSim (e.g., 0.95), the lender proceeds with the loan. Oth-
erwise, the borrower may be seen as risky.

11.5.5. Efficiency Considerations

• The association mapping M is updated off-chain by a random subset of validators and com-
mitted periodically. This ensures that queries are quick (single or few lookups) while still
being fully decentralized in maintenance.
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11.6. Workflow 6: Malicious Re-Linking Attempt

1. Blacklisted L1 Address: Suppose W
(1)
bad is a malicious address on Ethereum. Its linked L2

wallet W
(2)
bad is also penalized.

2. Creating Fresh Addresses: The attacker transfers funds to a new L1 address W
(1)
new, hoping

to link it to a newly created L2 wallet W
(2)
new and avoid the old penalties.

3. Association Risk at Linking: Once the attacker tries to finalize the link, the protocol
performs multi-hop tracing. It finds that W

(1)
new recently received funds from W

(1)
bad within the

random time/hop constraints.

4. Partial Penalty:
C

(new)
W

(2)
new

= C
(old)
W

(2)
new

+ ∆assoc,

effectively penalizing the new wallet.

5. Ongoing Monitoring: If W
(2)
new continues suspicious activity, negative votes or further as-

sociation triggers can push its score even lower.

11.6.1. Workflow 7: Linking the Same L1 Address to Multiple COSINE Wallets

COSINE prohibits the same L1 address W (1) from being linked to more than one L2 address W (2).
The mapping M ensures:

• If user Abad with a blacklisted COSINE wallet tries to create a new L2 wallet and re-link the
same L1 address, the protocol rejects it.

• The VRF-selected validators performing the link request will detect that M[ W (1) ] is already
set, thus denying the attempt.

These scenarios demonstrate how COSINE’s self-tuning, sequential approach manages negative
votes, partial blacklisting, rehabilitations, cross-chain interactions, and final verification steps.
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12. Transaction Fee Mechanism

COSINE sustains its validator set and ensures cost coverage by employing a fee-based recoup
design. Each update event draws from a network reward pool, and each verification transaction
repays the system by burning the accumulated cost.

12.1. Per-Event Payments to Validators

Whenever a wallet W undergoes a credit score update event (due to a vote, association penalty,
or rehab shift), the protocol pays a reward R

(i)
total to the validators from its network pool. Over

multiple updates, the total cost for W accumulates:

Cacc(W ) =
n∑

i=1
R

(i)
total.

12.2. Verification Fee & Burn

When a user or DAO calls VerifyScore(W ), the protocol checks Cacc(W ). The caller must pay:

Fverif(W ) = κ × Cacc(W ),

where κ ≥ 1. That amount is then burned. Finally, Cacc(W ) is reset to 0. This ensures that
repeated or frequent updates are not “free,” but eventually recouped at the point of verification by
the beneficiaries who require the credit score.

12.3. Cosine Similarity Request

If a user wants the protocol to compute cosine_sim(vW , vT ) or cosine_sim(vW , vW ′) with official
on-chain proof, they must pay the same verification fee. This covers the cost of prior updates that
shaped CW . A user can still read the raw CW by running their own node or explorer, but official
on-chain verification is locked behind the fee mechanism, ensuring cost coverage.

12.4. Rationale

• Cost Coverage: Over many updates, the reward pool pays validators. Ultimately, the user
or DAO that benefits from the final credit verification reimburses those costs.

• Stability: Because the verification fee is burnt, circulating token supply remains stable with
network usage as validators are paid.

• Spam Deterrence: Excessive updates for a single wallet make its subsequent verification
more expensive, discouraging trivial spamming of the credit score.
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12.5. Transaction Fees for Regular Token Transfers

In addition to fees for credit score verifications, the COSINE protocol implements a distinct fee
mechanism for regular send and receive transactions of COSINE tokens directly on the Layer-
2 (L2) blockchain. These transactions, which involve transferring tokens between wallets, are
fundamental to the token’s utility as a medium of exchange within the COSINE ecosystem. This
fee structure ensures that the computational and storage costs of processing such transactions are
covered while incentivizing validators to maintain network operations, all while aligning with the
protocol’s validator-driven consensus (Section 4) and decentralized storage framework (Section 5).

Fee Structure Each token transfer transaction requires the sender to pay a fee in COSINE
tokens, comprising two components:

• Base Fee: A minimum fee set by the protocol to cover the computational cost of transaction
validation and the storage cost of updating the Wallet State Trie (WST). This fee is dynam-
ically adjusted based on network usage (e.g., transaction volume over a trailing period) to
prevent spam and ensure resource efficiency. For example, the base fee might be initialized at
0.002 COSINE tokens, slightly above the estimated marginal cost of processing and storage
(e.g., 0.001 COSINE tokens).

• Optional Tip: An additional, user-specified amount that can be included to prioritize the
transaction during periods of high demand. While optional, the tip incentivizes validators
to include the transaction in the next block when block space is contested, enhancing user
flexibility.

The total fee for a transaction i is thus:

Fi = Base Feei + Tipi.

Fee Collection and Distribution The process for collecting and distributing fees leverages the
existing validator architecture:

1. Block Production: A subset of validators, Vselected, is chosen via the Verifiable Random
Function (VRF) mechanism (Section 4.2) to propose and validate each block. Blocks are
produced periodically (e.g., every 5 minutes) or triggered by sufficient transaction volume, as
outlined in Section 5.

2. Transaction Inclusion: The block proposer assembles a block from the transaction pool,
prioritizing transactions with higher total fees (Fi) if block space is limited due to congestion.
In typical conditions, COSINE’s high-throughput L2 design ensures all transactions meeting
the base fee are included.

3. Fee Pooling: Upon block confirmation, the total fees from all n transactions in the block
are pooled:

Pooled Fees =
n∑

i=1
Fi.
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4. Distribution to Validators: The pooled fees are distributed equally among the m =
|Vselected| validators in the subset:

Rv,i = Pooled Fees
m

,

where Rv,i is the reward paid to each validator v ∈ Vselected. This equal distribution is justified
since the VRF selection process already accounts for validators’ stake (Sv) and performance
scores (Pv) through the weight Wv = Sα

v × (1 + βPv), ensuring that higher-performing val-
idators are selected more frequently and thus earn more over time.

Integration with Decentralized Storage Regular token transfers directly update the CO-
SINE L2 ledger, specifically the Wallet State Trie (WST) within the decentralized storage system
(Section 5). Each transaction involves:

• Verifying the sender’s signature.

• Checking the sender’s token_balance in the WST to ensure sufficient funds (amount plus
fee).

• Updating the sender’s and receiver’s token_balance fields in the WST (subtracting the
amount and fee from the sender, adding the amount to the receiver).

• Recording the transaction in the block’s transaction list, formatted as {sender, receiver, amount, timestamp}.

These updates result in a new Merkle root (WST_root) committed to the block header, ensuring
tamper-proof storage. The base fee is calibrated to exceed the computational and storage costs of
these operations, which are relatively constant per transaction, unlike the variable costs of credit
score updates.

Rationale

• Cost Coverage: The base fee ensures that the marginal costs of processing and storing each
transaction are met, maintaining the economic viability of the L2 network.

• Validator Incentives: Direct fee distribution to validators complements the network reward
pool payments for credit score updates (Section 4.5), providing a self-sustaining incentive for
block production.

• Separation from Credit Score Mechanisms: Keeping transaction fees distinct from
verification fees (Section 12) and network pool rewards preserves funding for the protocol’s
credit scoring and fraud mitigation functions, while ensuring regular token transfers operate
independently.

• User Flexibility: The optional tip allows users to prioritize transactions during peak usage,
enhancing the user experience in a scalable Layer-2 environment.

• Spam Deterrence: Transactions with fees below the base fee are rejected or delayed, pre-
venting spam without requiring a complex gas system.
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Implementation Notes The base fee is initially set via protocol parameters and can be adjusted
through community governance or an automated algorithm (e.g., based on average transaction
volume over a 24-hour window). Client software (e.g., wallets) will suggest a default fee (base fee
plus a recommended tip) based on current network conditions, simplifying the process for users.
This mechanism ensures that COSINE remains a high-throughput, user-friendly L2 blockchain
while supporting its broader goals of trust and fraud mitigation in decentralized finance.
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13. Tokenomics

The total COSINE token supply remains:

1 000 000 000 COSINE tokens

Distribution is:

• Foundation & Core Team: 10%

• Advisors & Contributors: 5%

• Early Developer/Builder Grants: 10%

• Private Sale / Presale (combined): 15%

• Public Sale: 20%

• Network Rewards & Ecosystem Funds: 40%

The 40% reserved for Network Rewards & Ecosystem Funds specifically covers R
(i)
total validator

payments. Over time, the recoup mechanism ensures that active users or DAOs eventually burn
an equivalent or larger sum in verification fees.

Vesting Schedule:

• Foundation & Core Team (10%): Locked under a 4-year vesting schedule with a 1-year
cliff; then linear monthly unlocks over the next 36 months.

• Advisors & Contributors (5%): Locked under a 2-year vesting schedule with a short cliff
or linear monthly unlocks.

• Early Developer/Builder Grants (10%): Released based on milestone achievements.

• Private Sale / Presale (15%): 6–12 months lock, then linear unlock over an additional
6–12 months.

• Public Sale (20%): Unlocked immediately at the Token Generation Event (TGE).

• Network Rewards & Ecosystem Funds (40%): Distributed steadily over 5–8+ years.

13.1. Multi-Chain Strategy & Supply Invariance

COSINE tokens will be deployed on all major blockchain networks. The total supply remains fixed
at 1 billion tokens. Bridging contracts lock tokens on Ethereum and mint equivalent wrapped tokens
on other chains using a lock-and-mint (or burn-and-redeem) mechanism. Cross-chain arbitrage
ensures that token prices converge across different ecosystems.
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13.2. Validator Staking Requirement

To join the validator set of the COSINE network, participants are required to purchase and stake
a minimum of 100,000 COSINE tokens. This requirement ensures that validators have a signif-
icant economic commitment to the protocol, aligning their incentives with the long-term security
and integrity of the network. The staked tokens serve as collateral against potential misbehavior
and along with performance determine each validator’s influence within the consensus mechanism.
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14. Roadmap

14.1. Phase 1: Foundation & Early Launch (0–6 Months)

1. Core Protocol & MVP: Implement the fundamental self-tuning, single-dimensional credit
scoring system with VRF-based validator selection, outlier filtering, and the cost recoup
mechanism. Deploy on an Ethereum testnet.

2. Presale & Public Sale: Conduct private/presale rounds to raise capital, followed by a
public sale (20% of tokens) on Ethereum at TGE, and list COSINE on at least one DEX.

3. Developer SDKs & Community Bootstrapping: Allocate tokens to early testers, advi-
sors, and developers (under vesting schedules) and publish developer SDKs.

14.2. Phase 2: Cross-Chain Deployment & Lending Partnerships (6–12 Months)

1. Bridging Contracts: Deploy bridging contracts to major L1 chains (Ethereum, Solana,
Binance) and establish liquidity on major DEXs.

2. Lending Integration: Form partnerships with DeFi lending platforms to use the COSINE
credit scoring and partial penalty logic.

3. Validator & Developer Incentives: Begin distributing network rewards from the 40%
pool to validators and developers, and release milestone-based developer grants.

14.3. Phase 3: Global Expansion & DAO Formation (12–24 Months)

1. COSINE Lending DAO: Establish a governance framework for real-world lending integra-
tion, weighting parameters (e.g. initial λ, γ, β), and advanced proposals.

2. Open Lending Framework: Provide an easy interface for any project to plug into the
COSINE system for credit checks and partial penalty logic.

3. CEX Listings & Broad Adoption: Seek listings on top centralized exchanges and integrate
further across DeFi ecosystems.

14.4. Phase 4: Advanced Scaling & Full Ecosystem (24+ Months)

1. DAO Evolution & On-Chain Governance: Transition to fully on-chain community man-
agement of advanced parameters, synergy with real-world credit bureaus, etc.

2. Global Real-World Adoption: Expand cross-industry partnerships to bridge traditional
finance institutions, banks and online lending platforms with COSINE scoring.

3. Ongoing Optimizations & Research: Continue refining the self-tuning approach, analyz-
ing advanced outlier detection, or exploring new cross-chain frameworks.
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15. Conclusion

COSINE offers a transformative approach to decentralized credit scoring and fraud mitigation
within the rapidly evolving DeFi ecosystem. By leveraging a self-tuning, real-time scoring mecha-
nism, COSINE enables adaptive and transparent credit assessments, providing a trust-minimized
environment for decentralized lending and financial interactions. The system’s integration of
reputation-weighted voting, dynamic scaling factors, and robust fraud detection mechanisms—including
randomized time windows and multi-hop association analysis—ensures that the protocol is both
resilient to evolving malicious strategies and efficient in updating creditworthiness in response to
on-chain behavior.

The use of cosine similarity for credit verification not only offers a more stable and intuitive measure
of trust but also enhances interoperability across multiple blockchains, empowering DeFi partic-
ipants to engage in cross-chain transactions with confidence. Additionally, the protocol’s cost-
recovery mechanism ensures sustainability, aligning incentives between users, validators, and the
broader ecosystem.

COSINE represents a critical step forward in the pursuit of a decentralized financial system that
operates on trust derived from verifiable, collective consensus rather than centralized authorities.
As the DeFi space continues to grow, COSINE’s framework for real-time credit scoring and fraud
mitigation sets a new standard for how decentralized applications can scale, innovate, and maintain
integrity while protecting against fraudulent activities. Ultimately, COSINE paves the way for a
more secure, efficient, and inclusive DeFi ecosystem, where credit and trust are governed by the
collective actions of its participants.
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